Impedance-Based Performance Analysis of Micropatterned Polymer Electrolyte Membrane Fuel Cells

نویسندگان

چکیده

Abstract Micropatterns applied to proton exchange membranes can improve the performance of polymer electrolyte fuel cells; however, mechanism underlying this improvement is yet be clarified. In study, a patterned membrane electrode assembly (MEA) was compared with flat one using electrochemical impedance spectroscopy and distribution relaxation time analysis. The micropattern positively affects oxygen reduction reaction by increasing area. However, simultaneously, pattern negatively gas diffusion because it lengthens average transport path through catalyst layer. addition, MEA more vulnerable flooding, but performs better than in low-humidity conditions. Therefore, composition, geometry, operating conditions micropatterned should comprehensively optimized achieve optimal performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells

In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...

متن کامل

Optimization of Polymer Electrolyte Membrane Fuel Cell Performance by Geometrical Changes

Three-dimensional computational fluid dynamics in house-code of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been developed. The conservation equations are numerically solved using finite volume technique. One of the important goals of this research is the investigation of the variation of bipolar plates width effect on the fuel cell performance compared with the conventional m...

متن کامل

Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells

A new approach to elucidate the operation and control of Polymer Electrolyte Membrane (PEM) fuel cells is being developed. A global reactor engineering approach is applied to PEM fuel cells to identify the essential physics that govern the dynamics in PEM fuel cells. Reaction engineering principles are employed to develop a one-dimensional differential PEM fuel cell suitable for elucidating the...

متن کامل

Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downst...

متن کامل

High-Peak-Power Polymer Electrolyte Membrane Fuel Cells

A polymer electrolyte membrane fuel cell with amorphous hydrated ruthenium dioxide (RuO2 " xH2O) supercapacitative sublayers inserted between the electrocatalyst layers and the Nafion membrane was fabricated to enhance the cell’s pulse power output. RuO2 " xH2O material showed a high capacitance ~ca. 230 F/g! and allowed a much higher pulse power output, which was demonstrated by cyclic voltamm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of electrochemical energy conversion and storage

سال: 2022

ISSN: ['2381-6872', '2381-6910']

DOI: https://doi.org/10.1115/1.4053388